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Solutions of mainstream flow pattems for three-dimensional, laminar,
incompressible thin-boundary-layer flows (over flat or slightly curved
surfaces) having similarity with respect to stationary Wlar coordinates
in the plane of the surface are derived. The solutions are summarized in
a table.

—

in laminar-boundary-layer

INTRODUCTION

attention has been devotedConsiderable
* research to theoretical solutions of the two- and three-dimensional

incompressible-boundary-layerequations using the “similarity” approach.
In this method, the partial differential boundary-layer equations are
transformed by means of a similarity parameter q and rewritten in terms
of functtons of q, their derivatives, the mainstream velocity components,
and their derivatives. Solutions are then sought for the mainstream flow
conditions for which the transformed equations reduce to ordinary differ-
ential equations for the functions of q (refs. 1 to 10). Some experi-
mental evidence is presented in reference 10 in support of this kind of –
theoretical development for laminar flows. Reference 11 presents a sys-

-J

tematic approach to similarity-type solutions using a generalized simi-
larity parameter. As a result, reference 11 has obtained solutions for
the permissible mainstream flows for all the boundary-layer flows having
classical similarity with respect to stationary rectangular coordinates.
The present report is an extension of the work of reference 11. Solutions
are sought for the mainstream flows in stationary cylindrical coordinates
for all the boundary-layer flows having classical similarity with respect
to the polar coordinates in the plane of the surface. -.—
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a,b,c,C

F,F(q)

f

G,G(q)

gjg(r,e)

k,m,n

rjejy

u, w

U,v,w

V

7

v

Subscripts:

SYMBOLS

constants

function of similarity parameter, u s ~’(n)

arbitrary function

function Or similarity parameter, w s WG’(q) for W+O

function of coordinates r and e “

constants
—

polar coordinates

mainstream velocity components in 8,r directions,
respectively

boundary-layer velocity components in @,y,r directions,
respectively

function of coordinates

similarity variable, q =

coefficient of kinematic

r and e, WZ–17’(q) for W=O

yg(rjQ)/fi

viscosity

1,2,3, . . . index numbers

Primes denote differentiation.

ANALYSIS
.—

Boundary-Layer Equations in Stationary Polar Coordinates

The three-dimensional laminar, incompressible,thin-boundary-layer
equations in stationary cylindrical coordinate form for flows over flat

v

t!F
-m.

.
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* (or slightly curved} surfaces with coordinate axes as shown in this sketch

~

.

.

are given by

U2 u aw -aw azw TF u aw aw-— ’77% ‘Wz —=-—+~~+w&
r ‘v~-vby2 r (lb]

where u, w, and v are the boundary-layer velocity components in the
(1,r, and y directions, respectively.

Equations (la) and (lb) sre the boundary-layer flow equations in the
tangential and radial directions, respectively. Consistent with the
restriction to thin-boundary-layer flows for flat (or slightly curved)
surfaces, the mainstream velocity components are

u= U(r,e)

w= W(r,e)
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The continuity equation for the bounda”~-layer flow is given by

~ au aw
r~+&

The boundary conditions me

U=w=v=

U+u

W+w }

O for y=O

as y+- 1

u

.— .—..

(lC)

Transformation of Equations Using Generalized v

The method of search for symmetric solutions desc%ibed in reference
11 suggests exact solutions (i.e., solutions for flows.having similarity
with respect to the polar coordinates r,e in the plane of the surface)
of equations (1) can be obtained as a result--oftransformations to new
coordinates r, 6, and Q where the space variable ~“ is of the form

s+ g(r,O)
‘G

(2)

In the rectangular coordinate systems, when either component of -
mainstream flow equals zero, straight mainstream flows result, and the
boundary-layer flow is two-dimensional with no secondary-flow overturning.
In polar coordinates when U = O, the mainstream flows are straight and
u = O (ref. 12). However, when U # O, there is curvature of the flow
streamlines even though W = O, and three-dimensionalboundary-layer
overturning does result. b polar coordinates, as wiKl be seen subse-
quently, it will be necessary to treat separately the cases of W = O
and W ~ O.

+
- Following the rectangular-coordinate-systemanalyses

(ref.wll ~“

(3a)=m~(q), U+”u—

WE w’(q), W+o (3b)
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The conditions8
on u and w

on F’ and G‘ required to satisfy boundary conditions
are

F’(0) = G’(0) = O

lim F’(q) =1”
l-l+.

1

(4a)

lim G’(TI)= 1
q+.

Now v may be determined by integration of the continuity equation
using equations (3):

(5)

● In order that v = O for y= O as required, it is possible with-
out loss of generality to set the boundary conditions

a F(0) =G(0) = O

and

}

(4b)
f(r,e) = o

(See appendix C of ref. 11 for a discussion of the necessary and suffi-
cient boundary conditions.)

(w
Upon substitution of equations (3) and (5), equation (la) becomes

+ 0)

uh~g2Fp+_
~r ~ : w ‘F’ - % ‘F’ - g2F’”= 0

(6) ‘“--““-
.

and equation (lb) becomes

.

.
uahg2m1f+–

2F~ : w ‘“ -: ‘“ - fJ2G’”=0 (7)
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The purpose of this investigation is to determine mainstream flow
solutions for which the transformed equations (6) and (7) reduce to

m

ordinary differential equations. As in reference 11, the mainstream flow
conditions that make the coefficient of the functions of q proportional
are so~ht. Under these ordinary-differential-equationconditions
(abbreviated to o.d.e. conditions), the common variable terms in the
equations may be divided out, leaving ordinary differential equations for
F and G. (The actual numerical solutions of the ordinary differential
equations are not attempted herein.) Although coefficients of similar
functions may be grouped and made proportional, the two techniques can be
shown to be equivalent. $4

For convenience, the coefficients for the functions of v in equa-
4

tions (6) and (7) are presented here in the order of their appearance.
With W+ 0, they are:

CDi32

The o.d.e. conditions require these nine coefficients to be pro-
portional to each other. The most general case, W = W(r,e), canbe
solved readily. From o.d.e. conditions on @, @, and @,

w. clIJ (8)

Then from o.d.e. conditions on @ and @, using equation (8),

which may be integrated to give

.

b

(9)

(10] *

.

C3
—e
c1

U=e fl(r) (11)
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From o.d.e. conditions on @ and @, using equations (8) and (11),&

f~(r)

~=

Therefore,

fl(r) =

Using equation (9) and redefining the
2 .to be writtenpermits W, U, and g

w(r,e) =

u(r,e) s

- (12)

c5r‘4 (13)

-.
constants involved for convenience

—

~rneme

~neti

g2(r,e) = ~rn-leme

No further restrictions on the forms of

(14)

W, U, and g2 sre required
L to satisfy the o.d.e. conditions for the remaining coefficients o, @j

@, and-@. Substitution of equations (8) and (9) indicates t~t- @-

u and @ are already proportional to @, while @ and @ are proportional

In addition, further analysis
flows w= W(r), W= w(e), or W=
equations (14) by suitable choices
when m = 0,

shows that the remaining possible main
constant + O can be obtained from
of n, m, a, and b. For example,

W(r) = brn

U(r) = srn

g2(r) = cm-l-
1

(15)

The ordinary differential equations for W(rje) ~ O now can be
obtained by substitution of equations (14) into equations (6) and (7);

( *II

)b(n + l)(F~G’ - 1) + am F’2 - ~ - 1 - ~ GF1l- cF’”= O
2

(16)

a2

( )
~(1-F’2)+am F’Gt -~-l +bn(G’2- 1)-w GG’’-c”’” =0

.

(17)
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w= o.- ~en W = 0, the
(1) become

corresponding

2+’$-U

NACA TN 3832
.

boundary-layer equations. , . .:

a2u u au— = ---%
ayz

(18a)

(18b)

The equation of continuity for the boundary-layer flow remains unchanged;
.

(lC)

The boundary conditions now are —

u= w=v=Ofory=O
)

}

U+IJ ) (18c)
asy~m

W+o
w

Fcm main flows such that W = 0, u and w are defined as follows: w

u s UF’(q) (19a)

where F= X(r,@) + O. The boundary conditions on F’..”and Gt requfied
to satis~y boundary conditions on u and w in equations (18)
(W = O, W(r)@) # O) are

F’(O) =G’(0) =0

lim Ft(v) = 1
7+”

lim G’(q) = O
q+al .1 (20a)

The expression for v obtained by integration o~”the continuity
—

equation (lc) is the same”as equation (5) with W bei–w replaced by ~;

w -

●



NACA TN 3832. 9

.

● As before, the boundary conditions chosen as sufficient to provide
that v=O for y=O are .

F(0) = G(0) = O

}

(20b)
f(r,e) = O

Substitution of eqmtions (19) and (21) into equations (18a) and (18b)
produces

—
:hhg2G+&+
2~ GF” - g2F’”= O (22)--

The ar&.unentconcerning determination of the o.d.e. conditions by
means of relations between the coefficients of the functions of q

~n.

equations (22) and {23) remains unchanged. These coefficients, it may be
noted, are the same as the coefficients for equations (6)

replaced by ~. Thus, the expressions for fi,U, and g2
.

ti(r,O)= brneme for b # O
)

W=o I

U(r,e) = arn~e

g2(rj8) = crn-leme J
The resulting ordinary differential equations are (W

( F3?’ )b(n+l)F’Gt+am F12 -~-l- ~GFi~ _
2

a2

( )
~ (1- F[2) +am F’G’ -~ +bnG’2 -b~GG”

,.
and (7) with W

can be written

(24)

= o)

cF’”= O (25)

cG”~= O

(26)
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REKKJLTSAND DISCUSSION ‘ .

The analysis of three-dimensional, la@nar, incompressible,thin-
boundary-layer fl~ws havi”ngsimilarity with respect to polar coordinates
has led to solutions for mainstream flows described by equation (14) or
(24). As a result of this analysis, table -Ihas been--prepared,which
summarizes the two cases of minstream flows over a ~t or slightly .
curved surface for which the bound”ary-layer””flows havi the required
similarity. 1+

As described earlier, secondary flows exist even--whenthe radial
z
4

~omponent of mainstream flow vanishes; W = O. For such cases a function
w= fi(r,e)# O is defined and the boundary~layer rad~al component of
flow is expressed as

..

w =~Gt(q) (19b)

The table presents these two cases W#O and W= O, ~ # O, for the
corresponding forms of the tangential component U = U(r,f3),which perm$ts ::
a solution by reduction of the boundary-layer
ferential equations.

Mainstream

equatio~ to ordinary dif-
—

s

.

When W # 0, “themainstreams are spiral flows. For W = 0, circular
mainstream flows are obtained.

U,wjw. - In regions where the thin-boundary-layer-theoryis applica-
ble, the mainstream is very nearly psrallel to the surface; U and W
are functions of r and 6’ only.

-.

The analysis shows that for–~he similarity solutions considered here
-.

only one form of U and W (or W) is possible; that is,

u = arneme

W (or. ~) = brneme

When W = O, by choosing m = O (case 1), many of the most frequently
encountered flow distributions can be obtained by suit~ble choices of “n.
Corresponding to n = -1 is fi_ee-vortexflow; for n = 1, wheel-type
flow. In all cases, W/U or W/U sre constants.

.

‘
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.
Rejection of mainstream on surface. - The equation for the projec-

tion of the mainstream on the surface may be obtained by integrating

w dr
u—’m

(27a)

for each case yielding

The slope of the projected streamline with respect to e = O obtained from

r+~tane ~tanf3+l
slope = =

& b
(28)

–-tane
s ~-rtane a

8
Q is found to be independent of radial position r.
y
U
u. Irrotationality. - For the mainstream flows Considered in this in-

vestigation and in regions of thin boundary-layers (as assumed for the
analysis), only the component of vorticity normal to the surface

“

law au u
733-Z-F

can be much different from zero (ref. 11). The values of the constants
specified under the chart listing “~rotationality” were obtained in each
case from

law au- Q=(nib- an-a) rn-leme=O
F%-= r

(29)

These values serve to set the conditions for nearly tirotational main-
stream flows. .

Boundsry Layer

As discussed in reference 11, the physical interl?retationof the
boundary-layer behavior that the mathematical representations purport to
describe is best found by examining the behavior of q and, in particu-

. lar, g(r,e). The boundary-layer thickness was shown (ref. 11) to be
inversely proportional to g. In order for the theoretical boundary layer
to have a beginning at a leading edge, as in a real fluid, there should,

. therefore, be a line along the surface for which g{r~e) is i~inite”
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In the solutions presented here, this occurs in the finite part of the
plane only at the point r = O for values of n c 1.” For n > 1, the

*

boundary layer may be considered to have a beginning only at r = =;
there the mainstream velocities take on “infinite” values.

Ordinary Differential Equations ; .-

The actual numerical solutions of the ordinary d~ferenti.al equa-
tions are beyond the scope of the present investigation. The literature :
contains examples of numerical solutions that have been calculated for <
particular valuesof the constants. Some of these examples are noted in
the listing “Comments and references” associated with each case in the
chart.

The present analysis then serves only to display the ordinary dif-
ferential equations that can be obtained with the und~lying assumptions.

—

In any particular case of interest for which the equations are appropri-
ate, the existence of the numerical solution and its computation must be
obtained individually. Nevertheless, some general rem&rks can be tie”
here (as in ref. 11) concerning the numerical solutioti.

Separation of F and G. - Under certain choices.of the free con-
stants involved, the functions F and G are separable; that is, one
equation of the-pair of ordinary differential equations will contain .

terms in only one of these functions and its.derivatives. Numerical
solutions are much more readily obtained in such cases than when the
functions are not separated. It can be noted from the-table that by
choosing a = O in case 1, equation (17) contains only terms in G and
its derivatives. This corresponds to mainstreams having no tangential
components of flow. Equation (17) becomes a Falkner-Skan type equation
with known solutions (refs. 1 and 2). Although it is not apparent from
the equations in the table alone, when a =’0, in case 1, then u = O
(ref. 12), equation (la) disappems, andso~oes ”eq~<Ton.(16). Such
flows are really two-dimensional flows originating from a stagnation
point and flowing out along straight radial ”Iines.

Linearity in u or w. - As discussed In reference 11 and applied
in reference 10, an extension of the solutions beyond strict similarity
of the velocity-component can sometimes be made by addft-ion of solutio~ _

where the boundary-layer equations are linew” in u or w. ~ch exten-
sions are not possible for the botindary-layerflows investigated here,
because equation (lb) is always nonlinear in u and in w except for

the trivial case of no mainstream flow.
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CONCLUDING REMARKS.

Solutions sre obtained for the mainstream flow patterns for boundary-
layer flows having classical similarity with respect to stationary polar

E
coordinates. The results are summarized in the table. The exact SOIU- “-
tions obtained are beset with the difficulty that their boundary layers -.-m

G have no proper leading edge in the finite part of the plane, whereas in
turbomachines a definite leading edge is generally required. Neverthe-
less, the analysis enables a study of the properties of the boundary- “--
layer flows and may have direct applicability when attention is confined
to appropriate regions of the flow. —

The solutions sre considered completed Yor the sake of this investi-
gation when the boundary-layer equations have been transformed into ordi-
nary differential equations. The actual numerical solutions for the “-
ordinary differential equations so derived are beyond the scope of this ‘“
work.

There are three configurations of main-flow streamlines for which
the similarity solutions here could be obtained. The mainstream may be -
(1) a stagnation-type flow out along radial lines froma stagnation

b point, (2) spiral flow out from (or in toward) a central point, or (3)
Circulsr flow. By suitable choice of the free constants involved, the
flows may include at will cases of acceleration or deceleration in the

●
radial or tangential directions. The solutions obtained here thus con-
stitute an extension of the similarity solutions obtained in reference 11
for rectangular coordinate systems.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, July 24, 1956
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TABLN 1. - sIMILARITY SOLUTIOWS IN STATIONARY POLAR COORDINATES

CASN I

W+o

417’7 , ,

Iu

n 14-}’2-441’2+“)’” c+0

Ordlnaly (16) b(n + l)(FW1 -
(

)-w~F,,-oFnt=ol)+am F@ -y-l

dlfferentie.1
equaticm

(17) #(l -
(

F!’)+ ml?,al .Eg -
)
1 +bn(lll’ - 1) -W. 00” - UP-o

Bnundq Pi(o) = al(o) - F(0) u G(O) - 0; lim Fl(71) - lim G!(T)) = 1
conditif?na n+- w-

pe

Projeotioo of r = Cea
mainstream

, spiral flaw streamlines, (a + O)

on aurfaoe

IrrOt ation- bm -an-a-O
al.ity

Comments and a = O, stagnation f%x. Sq. (16) vanishes. M. (17) beomw a Fel~er-
referenoes Skan equaticm, whloh la completely Delved In refa. 1 and 2.

Ref. 3: a-m= O, b-o/2, n- 1.
Ref. 13, p. 71: plane stugaaticm flnw: a-m-0, n=3, b- 1/3,

c-1, ~-~ (ref. 13).
Ref. 13, p. 74: lhree-dimenaiona.l stagnation point flow, axlsynawtrloal

oae. e: a=m-O, n-l, b-c, O-9(ref. 13).

1

g

!=/
01
al
w
N

P
(n
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TABLE 1. - Concluded. SIMILARITY SOLUTIONS IN”STATIONARY P6hFt COORDINATES

CASE II

u

w

n

Ordinery
differential
equations

Boundary
condltlone

ProjectIon of
malnatreem
on 8url?ace

Irrotatlon-
allty

Linearity
In u

Linearity
In w

Separation
of F and
Q

Comments and
references

w=o, vrj40
—

~nemO

o

,y:’em’y’2=y(+)’/’,c;o -,

((25) b(n+ l)(F’G’) + amF’2 - %--3) - W-Q.., - @ll = o

(26) #(l -
(

F12) + em FIGI - ~ +bn(0,2) - ~. ~an -..,,. c
-..

F!(O) =G’(0) -F(O) -G(O) ==0; lim F’(??) - 1; llm G’(11) -O
?p. n+.

r = C, circular flow streamil”nes

a(n+l)=O

(la) .m=o

Hla Llneer
lb Always nonlinear

—

H Not possible for this case —

;: a=O

a = 0, no flow
Ref. 13, p. 157, eq. (10.9), (dlscusslng work of “cf. 14):

a -b = c, m =0, n - 1. F! here s G (ref.
(ref. 13)

13Y. 01 here_F

. —

.
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